
CrossDoc
Team: Octo-Docs

Team Members:
Garrison Smith
Peter Huettl
Kristopher Moore
Brian Saganey

Client/Mentor
● Dr. James Palmer

○ Associate Professor at NAU -SICCS

● Dr. John Georgas
○ Associate Professor at NAU -SICCS

● Nakai McAddis
○ Graduate Professor

2

Problem
Statement

3

General Problem
Software/documentation interdependence

● Documentation is buried in software
● Software/documentation tightly coupled

4

Specific Problem
● Large companies with large projects

○ Culturally diverse developers
○ Language barrier

● Software and Documentation
○ Misunderstood documentation
○ Comments mismatched
○ within the codebase

5

Solution
Statement

6

Improved Commenting System
● Comments and software are

decoupled
● Easily scalable for small teams

and large organizations
● Comments are specific for

developers
○ Specific to cultural
○ Specific to language

7

The Solution: CrossDoc
● Comments stored in external locations

○ Easily accessible for all users
○ Editable in code or in comment store

● Scales alongside teams
○ Expands independently from code

● Breaks down cultural barriers
○ Easily store and reference

comments in different
languages

8

9

CrossDoc Implementation
● Key Requirements

○ Simple setup for teams and organizations of any size
○ All Comments stored in one location
○ Simple editing of comments for non-programmers
○ Users can simply create, delete, and update comments within text-editors

■ Atom
■ Emacs
■ Sublime
■ Vim

Architectural
Overview

10

High Level Overview
● Back-end command line program
● Front-end text editor plugins
● CrossDoc repository

11

Command Line Program
● Implements core functionality

○ Create comments
○ Read comments
○ Delete comments
○ Etc..

● Provides API to interact with tool
● Text editor agnostic

12

Command Line Program
● Parser

○ Reads input
○ Delegates to commands

● Commands
○ Implements CrossDoc functionality

● Logger
○ Provides concise output
○ Outputs help text where necessary

13

Text Editor Plugins
● CrossDoc user interface
● Intuitive commands and hotkeys
● Support for multiple text editors

○ Atom
○ Emacs
○ Sublime
○ Vim

14

CrossDoc Repository
● Identified by a custom config

file (cdoc-config.json)
● Stores references to

comment stores
● Persistent meta-

data storage

15

Comment Storage

● Comment stores
○ Directory of anchors
○ Local and remote

● CrossDoc anchors
○ Comment identifier

● Comment sets
○ Distinct categories
○ Stores comment text

16

Implementation
Challenges

17

Development Challenges
● Consistent functionalities across editors

○ Managing limitations of text editor APIs
○ Developing a consistent UX design

● Managing multiple storage methods
○ Remote and local storage
○ Comment validation
○ Using OS agnostic methods

18

Development Solutions
● Consistent functionalities across editors

○ Designed Cdoc command format as adaptable for all editors
○ Language agnostic and extendable to Atom, Emacs, Sublime, and Vim APIs
○ Simple format, with recognizable commands for ease of use

● Managing multiple storage methods
○ Implemented CrossDoc CL-Parser to adapt to flexible storage inputs
○ Validation of comments and stores, preventing issues when anchor is clipped

19

Development
Schedule

20

21

Gantt Chart

Development
Milestones

Command Line Parser:

The interface of CrossDoc, tool
extended by other Subsystems.

Text Editor Plugin Extensions:

● Atom
● Emacs
● Sublime
● Vim

22

Conclusion

23

Summary: Problem

● Documentation is buried, too reliant on Codebase

24

Summary: Solution
● Provide a better way to

comment with CrossDoc!

● Scalable, Exterior Storage,
and Enhanced Comment
Functionalities.

25

The Path Ahead
● Remote Comment Stores

○ Accessible remote versions of Local Comment Store system
○ Extension of CL-Parsers functionality

● Git Hooks Implementation
○ Incorporate Git-Hooks pre/post commit system to allow CrossDoc to remove comments from

the official commits

26

